Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Appl Environ Microbiol ; : e0169423, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624219

RESUMO

Given the multitude of extracellular enzymes at their disposal, many of which are designed to degrade nature's polymers (lignin, cutin, cellulose, etc.), fungi are adept at targeting synthetic polyesters with similar chemical composition. Microbial-influenced deterioration of xenobiotic polymeric surfaces is an area of interest for material scientists as these are important for the conservation of the underlying structural materials. Here, we describe the isolation and characterization of the Papiliotrema laurentii 5307AH (P. laurentii) cutinase, Plcut1. P. laurentii is basidiomycete yeast with the ability to disperse Impranil-DLN (Impranil), a colloidal polyester polyurethane, in agar plates. To test whether the fungal factor involved in this clearing was a secreted enzyme, we screened the ability of P. laurentii culture supernatants to disperse Impranil. Using size exclusion chromatography (SEC), we isolated fractions that contained Impranil-clearing activity. These fractions harbored a single ~22 kD band, which was excised and subjected to peptide sequencing. Homology searches using the peptide sequences identified, revealed that the protein Papla1 543643 (Plcut1) displays similarities to serine esterase and cutinase family of proteins. Biochemical assays using recombinant Plcut1 confirmed that this enzyme has the capability to hydrolyze Impranil, soluble esterase substrates, and apple cutin. Finally, we confirmed the presence of the Plcut1 in culture supernatants using a custom antibody that specifically recognizes this protein. The work shown here supports a major role for the Plcut1 in the fungal degradation of natural polyesters and xenobiotic polymer surfaces.IMPORTANCEFungi play a vital role in the execution of a broad range of biological processes that drive ecosystem function through production of a diverse arsenal of enzymes. However, the universal reactivity of these enzymes is a current problem for the built environment and the undesired degradation of polymeric materials in protective coatings. Here, we report the identification and characterization of a hydrolase from Papiliotrema laurentii 5307AH, an aircraft-derived fungal isolate found colonizing a biodeteriorated polymer-coated surface. We show that P. laurentii secretes a cutinase capable of hydrolyzing soluble esters as well as ester-based compounds forming solid surface coatings. These findings indicate that this fungus plays a significant role in biodeterioration through the production of a cutinase adept at degrading ester-based polymers, some of which form the backbone of protective surface coatings. The work shown here provides insights into the mechanisms employed by fungi to degrade xenobiotic polymers.

3.
Microbiol Resour Announc ; 13(3): e0075623, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38376194

RESUMO

The Ascomycota yeast Aureobasidium melanogenum strain W12 was isolated from an aircraft polymer-coated surface. The genome size is 53,160,883 bp with a G + C content of 50.13%. The genome contains fatty acid transporters, cutinases, hydroxylases, and lipases potentially used for survival on polymer coatings on aircraft.

4.
MSMR ; 30(5): 9-14, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37535262

RESUMO

In this study, wastewater samples collected from a participating sentinel site were initially screened for the presence or absence of SARS-CoV-2 RNA using portable RT-PCR, with positive samples sequenced using a handheld MinION nanopore sequencing device. Genomic biosurveillance of SARS-CoV-2 and its variants within wastewater has been established as an early warning system of infectious disease spread in a given catchment area, due to good correlation between spikes in viral levels detected in wastewater coincident with increases in COVID-19 incidence rates. Moreover, viral titers detected in a single wastewater sample are reflective of pre-symptomatic, asymptomatic, and post-symptomatic cases, making wastewater-based epidemiology (WBE) a cost-effective, non-invasive public health surveillance method complementary to clinical diagnostic testing. The results of this study demonstrate the utility of population-scale SARS-CoV-2 epidemiology for insights into the viral evolution and transmission dynamics associated with specific SARS-CoV-2 variants that are necessary for effective strategies of containment and timely deployment of appropriate countermeasures.


Assuntos
Biovigilância , COVID-19 , Militares , Sequenciamento por Nanoporos , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Águas Residuárias , Teste para COVID-19
5.
Environ Microbiome ; 18(1): 66, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533117

RESUMO

The Tri-Service Microbiome Consortium (TSMC) was founded to enhance collaboration, coordination, and communication of microbiome research among DoD organizations and to facilitate resource, material and information sharing amongst consortium members, which includes collaborators in academia and industry. The 6th Annual TSMC Symposium was a hybrid meeting held in Fairlee, Vermont on 27-28 September 2022 with presentations and discussions centered on microbiome-related topics within seven broad thematic areas: (1) Human Microbiomes: Stress Response; (2) Microbiome Analysis & Surveillance; (3) Human Microbiomes Enablers & Engineering; (4) Human Microbiomes: Countermeasures; (5) Human Microbiomes Discovery - Earth & Space; (6) Environmental Micro & Myco-biome; and (7) Environmental Microbiome Analysis & Engineering. Collectively, the symposium provided an update on the scope of current DoD microbiome research efforts, highlighted innovative research being done in academia and industry that can be leveraged by the DoD, and fostered collaborative opportunities. This report summarizes the activities and outcomes from the 6th annual TSMC symposium.

6.
ACS Biomater Sci Eng ; 9(9): 5176-5185, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37642529

RESUMO

Synthetic biology provides a means of engineering tailored functions into probiotic bacteria. Of particular interest is introducing microbial sense and response functions; however, techniques for testing in physiologically relevant environments, such as those for the intended use, are still lacking. Typically, engineered probiotics are developed and tested in monoculture or in simplified cocultures still within ideal environments. In vitro fermentation models using simplified microbial communities now allow us to simulate engineered organism behavior, specifically organism persistence and intended functionality, within more physiologically relevant, tailored microbial communities. Here, probiotic bacteria Escherichia coli Nissle and Lactobacillus plantarum engineered with sense and response functionalities were evaluated for the ability to persist and function without adverse impact on commensal bacteria within simplified polymicrobial communities with increasing metabolic competition that simulate gut microbe community dynamics. Probiotic abundance and plasmid stability, measured by viability qPCR, decreased for engineered E. coli Nissle relative to monocultures as metabolic competition increased; functional output was not affected. For engineered L. plantarum, abundance and plasmid stability were not adversely impacted; however, functional output was decreased universally as metabolic competition was introduced. For both organisms, adverse effects on select commensals were not evident. Testing engineered probiotics in more physiologically relevant in vitro test beds can provide critical knowledge for circuit design feedback and functional validation prior to the transition to more costly and time-consuming higher-fidelity testing in animal or human studies.


Assuntos
Escherichia coli , Probióticos , Animais , Humanos , Fermentação , Escherichia coli/genética , Engenharia
7.
J Breath Res ; 17(3)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37352843

RESUMO

Exhaled breath research has been hindered by a lack of standardization in collection and analysis methodologies. Recently, the Respiration Collector forIn VitroAnalysis (ReCIVA) sampling device has illustrated the potential to provide a consistent and convenient method for exhaled breath collection onto adsorbent media. However, the significant costs, compared to exhaled breath bags, associated with the standardized collector is believed to be the reason for limited widespread use by researchers in the exhaled breath field. For example, in addition to the sampling hardware, a single-use disposable silicon mask affixed with a filter is required for each exhaled breath collection. To reduce the financial burden, streamline device upkeep, reduce waste material, and ease the logistical burden associated with the single use masks, it is hypothesized that the consumable masks and filters could be sterilized by autoclaving for reuse. The masks were contaminated, autoclaved, and then tested for any surviving pathogens with spore strip standards and by measuring the optical density of cultures. The compound background collected when using the ReCIVA with new masks was compared to that collected with repeatedly autoclaved masks via thermal desorption gas chromatography mass spectrometry (TD-GC-MS). The capacity to block particulate matter of new filters was tested against that of autoclaved filters by introducing an aerosol and comparing pre-filter and post-filter particle counts. Finally, breath samplings were conducted with new masks and autoclaved masks to test for changes in measurements by TD-GC-MS of exogenous and endogenous compounds. The data illustrate the autoclave cycle sterilizes masks spiked with saliva to background levels (p= 0.2527). The results indicate that background levels of siloxane compounds are increased as masks are repetitively autoclaved. The data show that mask filters have significant breakthrough of 1µm particles after five repetitive autoclaving cycles compared to new filters (p= 0.0219). Finally, exhaled breath results utilizing a peppermint ingestion protocol indicate two compounds associated with peppermint, menthone and 1-Methyl-4-(1-methylethyl)-cyclohexanol, and an endogenous exhaled breath compound, isoprene, show no significant difference if sampled with a new mask or a mask autoclaved five times (p> 0.1063). Collectively, the data indicate that ReCIVA masks and filters can be sterilized via autoclave and reused. The results suggest ReCIVA mask and filter reuse should be limited to three times to limit potentially problematic background contaminants and filter dysfunction.


Assuntos
Testes Respiratórios , Esterilização , Humanos , Testes Respiratórios/métodos , Cromatografia Gasosa-Espectrometria de Massas , Expiração , Padrões de Referência
8.
Front Microbiol ; 14: 1172798, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206339

RESUMO

Steep Cone Geyser is a unique geothermal feature in Yellowstone National Park (YNP), Wyoming, actively gushing silicon-rich fluids along outflow channels possessing living and actively silicifying microbial biomats. To assess the geomicrobial dynamics occurring temporally and spatially at Steep Cone, samples were collected at discrete locations along one of Steep Cone's outflow channels for both microbial community composition and aqueous geochemistry analysis during field campaigns in 2010, 2018, 2019, and 2020. Geochemical analysis characterized Steep Cone as an oligotrophic, surface boiling, silicious, alkaline-chloride thermal feature with consistent dissolved inorganic carbon and total sulfur concentrations down the outflow channel ranging from 4.59 ± 0.11 to 4.26 ± 0.07 mM and 189.7 ± 7.2 to 204.7 ± 3.55 µM, respectively. Furthermore, geochemistry remained relatively stable temporally with consistently detectable analytes displaying a relative standard deviation <32%. A thermal gradient decrease of ~55°C was observed from the sampled hydrothermal source to the end of the sampled outflow transect (90.34°C ± 3.38 to 35.06°C ± 7.24). The thermal gradient led to temperature-driven divergence and stratification of the microbial community along the outflow channel. The hyperthermophile Thermocrinis dominates the hydrothermal source biofilm community, and the thermophiles Meiothermus and Leptococcus dominate along the outflow before finally giving way to more diverse and even microbial communities at the end of the transect. Beyond the hydrothermal source, phototrophic taxa such as Leptococcus, Chloroflexus, and Chloracidobacterium act as primary producers for the system, supporting heterotrophic growth of taxa such as Raineya, Tepidimonas, and Meiothermus. Community dynamics illustrate large changes yearly driven by abundance shifts of the dominant taxa in the system. Results indicate Steep Cone possesses dynamic outflow microbial communities despite stable geochemistry. These findings improve our understanding of thermal geomicrobiological dynamics and inform how we can interpret the silicified rock record.

9.
Geobiology ; 20(1): 79-97, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34337850

RESUMO

Modern carbonate tufa towers in the alkaline (~pH 9.5) Big Soda Lake (BSL), Nevada, exhibit rapid precipitation rates (exceeding 3 cm/year) and host diverse microbial communities. Geochemical indicators reveal that carbonate precipitation is, in part, promoted by the mixing of calcium-rich groundwater and carbonate-rich lake water, such that a microbial role for carbonate precipitation is unknown. Here, we characterize the BSL microbial communities and evaluate their potential effects on carbonate precipitation that may influence fast carbonate precipitation rates of the active tufa mounds of BSL. Small subunit rRNA gene surveys indicate a diverse microbial community living endolithically, in interior voids, and on tufa surfaces. Metagenomic DNA sequencing shows that genes associated with metabolisms that are capable of increasing carbonate saturation (e.g., photosynthesis, ureolysis, and bicarbonate transport) are abundant. Enzyme activity assays revealed that urease and carbonic anhydrase, two microbial enzymes that promote carbonate precipitation, are active in situ in BSL tufa biofilms, and urease also increased calcium carbonate precipitation rates in laboratory incubation analyses. We propose that, although BSL tufas form partially as a result of water mixing, tufa-inhabiting microbiota promote rapid carbonate authigenesis via ureolysis, and potentially via bicarbonate dehydration and CO2 outgassing by carbonic anhydrase. Microbially induced calcium carbonate precipitation in BSL tufas may generate signatures preserved in the carbonate microfabric, such as stromatolitic layers, which could serve as models for developing potential biosignatures on Earth and elsewhere.


Assuntos
Carbonatos , Microbiota , Biofilmes , Carbonato de Cálcio/química , Precipitação Química , Lagos
11.
Front Cell Infect Microbiol ; 11: 702047, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532299

RESUMO

Campylobacter jejuni infection is a leading cause of foodborne disease, common to children, adult travelers, and military populations in low- to middle-income countries. In the absence of a licensed vaccine, efforts to evaluate prophylactic agents are underway. The prophylactic efficacy of a twice-daily, 550 mg dose of the antibiotic rifaximin demonstrated no efficacy against campylobacteriosis in a controlled human infection model (CHIM); however, samples from the CHIM study were utilized to assess how the human gut microbiome responds to C. jejuni infection, and if a 'protective' microbiota exists in study participants not developing campylobacteriosis. Statistically significant, but minor, differences in study participant beta diversity were identified during the challenge period (p = 0.002, R2 = 0.042), but no significant differences were otherwise observed. Pre-challenge alpha diversity was elevated in study participants who did not develop campylobacteriosis compared to those who did (p < 0.001), but alpha diversity declined in all study participants from the pre-challenge period to post-discharge. Our work provides insight into gut microbiome shifts observed during a C. jejuni CHIM and following antibiotic treatment. This study utilized a high dose of 1.7 x 105 colony-forming units of C. jejuni; future work could include CHIM studies performed with inocula more closely mimicking natural exposure as well as field studies involving naturally-occurring enteric infections.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Microbioma Gastrointestinal , Adulto , Assistência ao Convalescente , Criança , Humanos , Alta do Paciente
12.
Appl Environ Microbiol ; 87(24): e0117721, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34586908

RESUMO

Fungi that degrade B20 biodiesel in storage tanks have also been linked to microbiologically influenced corrosion (MIC). A member of the filamentous fungal genus Paecilomyces and a yeast from the genus Wickerhamomyces were isolated from heavily contaminated B20 storage tanks from multiple Air Force bases. Although these taxa were linked to microbiologically influenced corrosion in situ, precise measurement of their corrosion rates and pitting severity on carbon steel was not available. In the experiments described here, we directly link fungal growth on B20 biodiesel to higher corrosion rates and pitting corrosion of carbon steel under controlled conditions. When these fungi were growing solely on B20 biodiesel for carbon and energy, consumption of FAME and n-alkanes was observed. The corrosion rates for both fungi were highest at the interface between the B20 biodiesel and the aqueous medium, where they acidified the medium and produced deeper pits than abiotic controls. Paecilomyces produced the most corrosion of carbon steel and produced the greatest pitting damage. This study characterizes and quantifies the corrosion of carbon steel by fungi that are common in fouled B20 biodiesel through their metabolism of the fuel, providing valuable insight for assessing MIC associated with storing and dispensing B20 biodiesel. IMPORTANCE Biodiesel is widely used across the United States and worldwide, blended with ultra-low-sulfur diesel in various concentrations. In this study, we were able to demonstrate that the filamentous fungus Paecilomyces AF001 and the yeast Wickerhamomyces SE3 were able to degrade fatty acid methyl esters and alkanes in biodiesel, causing increases in acidity. Both fungi also accelerated the corrosion of carbon steel, especially at the interface of the fuel and water, where their biofilms were located. This research provides controlled, quantified measurements and the localization of microbiologically influenced corrosion caused by common fungal contaminants in biodiesel fuels.


Assuntos
Biocombustíveis , Paecilomyces/metabolismo , Saccharomycetales/metabolismo , Aço , Alcanos , Biocombustíveis/microbiologia , Carbono , Corrosão
13.
Med J (Ft Sam Houst Tex) ; (PB 8-21-01/02/03): 37-49, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33666911

RESUMO

SARS-CoV-2 has highlighted the requirement for a drastic change in pandemic response. While cases continue to rise, there is an urgent need to deploy sensitive and rapid testing in order to identify potential outbreaks before there is an opportunity for further community spread. Currently, reverse transcription quantitative polymerase chain reaction (RT-qPCR) is considered the gold standard for diagnosing an active infection, using a nasopharyngeal swab; however, it can take days after symptoms develop to properly identify and trace the infection. While many civilian jobs can be performed remotely, the Department of Defense (DOD) is by nature a very fluid organization which requires in-person interaction and a physical presence to maintain effectiveness. In this commentary, we examine several current and emergent technologies and their ability to identify both active and previous SARS-CoV-2 infection, possibly in those without symptoms. Further, we will explore an ongoing study at the Air Force Research Laboratory, utilizing Reverse Transcription Loop-mediated isothermal amplification (RT-LAMP), next-generation sequencing, and the presence of SARS-CoV-2 antibodies through Lateral Flow Immunoassays. The ability to identify SARS-CoV-2 through volatile organic compound biomarker identification will also be explored. By exploring and validating multiple testing strategies, and contributing to Operation Warp Speed, the DOD is postured to respond to SARS-CoV-2, and future pandemics.


Assuntos
Teste de Ácido Nucleico para COVID-19 , Teste Sorológico para COVID-19 , COVID-19/diagnóstico , Militares , SARS-CoV-2/isolamento & purificação , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , RNA Viral/isolamento & purificação , Sensibilidade e Especificidade , Estados Unidos
14.
Geobiology ; 19(3): 261-277, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33524239

RESUMO

Micro-organisms have long been implicated in the construction of stromatolites. Yet, establishing a microbial role in modern stromatolite growth via molecular analysis is not always straightforward because DNA in stromatolites can have multiple origins. For example, the genomic material could represent the microbes responsible for the construction of the stromatolite (i.e., "builders"), microbes that inhabited the structure after it was built (i.e., "tenants"), or microbes/organic matter that were passively incorporated after construction from the water column or later diagenetic fluids (i.e., "squatters"). Disentangling the role of micro-organisms in stromatolite construction, already difficult in modern systems, becomes more difficult as organic signatures degrade, and their context is obscured. To evaluate our ability to accurately decipher the role of micro-organisms in stromatolite formation in geologically recent settings, 16/18S SSU rRNA gene sequences were analyzed from three systems where the context of growth was well understood: (a) an actively growing stromatolite from a silicic hot spring in Yellowstone National Park, Wyoming, where the construction of the structure is controlled by cyanobacteria; (b) a mixed carbonate and silica precipitate from Little Hot Creek, a hot spring in the Long Valley Caldera of California that has both abiogenic and biogenic components to accretion; and (c) a near-modern lacustrine carbonate stromatolite from Walker Lake, Nevada that is likely abiogenic. In all cases, the largest percentage of recovered DNA sequences, especially when focused on the deeper portions of the structures, belonged to either the tenant or squatter communities, not the actual builders. Once removed from their environmental context, correct interpretation of biology's role in stromatolite morphogenesis was difficult. Because high-throughput genomic analysis may easily lead to incorrect assumptions even in these modern and near-modern structures, caution must be exercised when interpreting micro-organismal involvement in the construction of accretionary structures throughout the rock record.


Assuntos
Cianobactérias , Migrantes , Cianobactérias/genética , Sedimentos Geológicos , Humanos , Nevada , Wyoming
15.
Appl Environ Microbiol ; 87(2)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33127818

RESUMO

Serpentinization can generate highly reduced fluids replete with hydrogen (H2) and methane (CH4), potent reductants capable of driving microbial methanogenesis and methanotrophy, respectively. However, CH4 in serpentinized waters is thought to be primarily abiogenic, raising key questions about the relative importance of methanogens and methanotrophs in the production and consumption of CH4 in these systems. Herein, we apply molecular approaches to examine the functional capability and activity of microbial CH4 cycling in serpentinization-impacted subsurface waters intersecting multiple rock and water types within the Samail Ophiolite of Oman. Abundant 16S rRNA genes and transcripts affiliated with the methanogenic genus Methanobacterium were recovered from the most alkaline (pH, >10), H2- and CH4-rich subsurface waters. Additionally, 16S rRNA genes and transcripts associated with the aerobic methanotrophic genus Methylococcus were detected in wells that spanned varied fluid geochemistry. Metagenomic sequencing yielded genes encoding homologs of proteins involved in the hydrogenotrophic pathway of microbial CH4 production and in microbial CH4 oxidation. Transcripts of several key genes encoding methanogenesis/methanotrophy enzymes were identified, predominantly in communities from the most hyperalkaline waters. These results indicate active methanogenic and methanotrophic populations in waters with hyperalkaline pH in the Samail Ophiolite, thereby supporting a role for biological CH4 cycling in aquifers that undergo low-temperature serpentinization.IMPORTANCE Serpentinization of ultramafic rock can generate conditions favorable for microbial methane (CH4) cycling, including the abiotic production of hydrogen (H2) and possibly CH4 Systems of low-temperature serpentinization are geobiological targets due to their potential to harbor microbial life and ubiquity throughout Earth's history. Biomass in fracture waters collected from the Samail Ophiolite of Oman, a system undergoing modern serpentinization, yielded DNA and RNA signatures indicative of active microbial methanogenesis and methanotrophy. Intriguingly, transcripts for proteins involved in methanogenesis were most abundant in the most highly reacted waters that have hyperalkaline pH and elevated concentrations of H2 and CH4 These findings suggest active biological methane cycling in serpentinite-hosted aquifers, even under extreme conditions of high pH and carbon limitation. These observations underscore the potential for microbial activity to influence the isotopic composition of CH4 in these systems, which is information that could help in identifying biosignatures of microbial activity on other planets.


Assuntos
Água Subterrânea/microbiologia , Silicatos de Magnésio , Metano/metabolismo , Bactérias/genética , Metagenômica , Omã , RNA Ribossômico 16S/genética
16.
mSystems ; 5(4)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753510

RESUMO

Biological sulfur cycling in polar, low-temperature ecosystems is an understudied phenomenon in part due to difficulty of access and the dynamic nature of glacial environments. One such environment where sulfur cycling is known to play an important role in microbial metabolisms is located at Borup Fiord Pass (BFP) in the Canadian High Arctic. Here, transient springs emerge from ice near the terminus of a glacier, creating a large area of proglacial aufeis (spring-derived ice) that is often covered in bright yellow/white sulfur, sulfate, and carbonate mineral precipitates accompanied by a strong odor of hydrogen sulfide. Metagenomic sequencing of samples from multiple sites and of various sample types across the BFP glacial system produced 31 metagenome-assembled genomes (MAGs) that were queried for sulfur, nitrogen, and carbon cycling/metabolism genes. An abundance of sulfur cycling genes was widespread across the isolated MAGs and sample metagenomes taxonomically associated with the bacterial classes Alphaproteobacteria and Gammaproteobacteria and Campylobacteria (formerly the Epsilonproteobacteria). This corroborates previous research from BFP implicating Campylobacteria as the primary class responsible for sulfur oxidation; however, data reported here suggested putative sulfur oxidation by organisms in both the alphaproteobacterial and gammaproteobacterial classes that was not predicted by previous work. These findings indicate that in low-temperature, sulfur-based environments, functional redundancy may be a key mechanism that microorganisms use to enable coexistence whenever energy is limited and/or focused by redox chemistry.IMPORTANCE A unique environment at Borup Fiord Pass is characterized by a sulfur-enriched glacial ecosystem in the low-temperature Canadian High Arctic. BFP represents one of the best terrestrial analog sites for studying icy, sulfur-rich worlds outside our own, such as Europa and Mars. The site also allows investigation of sulfur-based microbial metabolisms in cold environments here on Earth. Here, we report whole-genome sequencing data that suggest that sulfur cycling metabolisms at BFP are more widely used across bacterial taxa than predicted. From our analyses, the metabolic capability of sulfur oxidation among multiple community members appears likely due to functional redundancy present in their genomes. Functional redundancy, with respect to sulfur-oxidation at the BFP sulfur-ice environment, may indicate that this dynamic ecosystem hosts microorganisms that are able to use multiple sulfur electron donors alongside other metabolic pathways, including those for carbon and nitrogen.

17.
Microbiol Resour Announc ; 9(14)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32241853

RESUMO

Here, we present 95 metagenome-assembled genomes (MAGs) that harbor antimicrobial resistance genes, isolated from samples obtained in a large advanced wastewater reclamation facility prior to microfiltration. The MAGs were not in abundance after filtration at the facility and represent a useful resource to the water treatment community at large.

18.
Front Microbiol ; 11: 167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174893

RESUMO

Renewable fuels hold great promise for the future yet their susceptibility to biodegradation and subsequent corrosion represents a challenge that needs to be directly assessed. Biodiesel is a renewable fuel that is widely used as a substitute or extender for petroleum diesel and is composed of a mixture of fatty acid methyl esters derived from plant or animal fats. Biodiesel can be blended up to 20% v/v with ultra-low sulfur diesel (i.e., B20) and used interchangeably with diesel engines and infrastructure. The addition of biodiesel, however, has been linked to increased susceptibility to biodegradation. Microorganisms proliferating via degradation of biodiesel blends have been linked to microbiologically influenced corrosion in the laboratory, but not measured directly in storage tanks (i.e., in situ). To measure in situ microbial proliferation, fuel degradation and microbially influenced corrosion, we conducted a yearlong study of B20 storage tanks in operation at two locations, identified the microorganisms associated with fuel fouling, and measured in situ corrosion. The bacterial populations were more diverse than the fungal populations, and largely unique to each location. The bacterial populations included members of the Acetobacteraceae, Clostridiaceae, and Proteobacteria. The abundant Eukaryotes at both locations consisted of the same taxa, including a filamentous fungus within the family Trichocomaceae, not yet widely recognized as a contaminant of petroleum fuels, and the Saccharomycetaceae family of yeasts. Increases in the absolute and relative abundances of the Trichocomaceae were correlated with significant, visible fouling and pitting corrosion. This study identified the relationship between fouling of B20 with increased rates of corrosion and the microorganisms responsible, largely at the bottom of the sampled storage tanks. To our knowledge this is the first in situ study of this scale incorporating community and corrosion measurements in an active biodiesel storage environment.

19.
Sci Total Environ ; 713: 136698, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32019036

RESUMO

Bio-electrochemical denitrification (BED) is a promising organic carbon-free nitrate remediation technology. However, the relationship between engineering conditions, biofilm community composition, and resultant functions in BED remains under-explored. This study used deep sequencing and variation partitioning analysis to investigate the compositional shifts in biofilm communities under varied poised potentials in the batch mode, and correlated these shifts to reactor-level functional differences. Interestingly, the results suggest that the proliferation of a key species, Thiobacillus denitrificans, and community diversity (the Shannon index), were almost equally important in explaining the reactor-to-reactor functional variability (e.g. variability in denitrification rates was 51% and 38% attributable to key species and community diversity respectively, with a 30% overlap), but neither was heavily impacted by the poised potential. The findings suggest that while enriching the key species may be critical in improving the functional efficiency of BED, poised potentials may not be an effective strategy to achieve the desired level of enrichment in substrate-limited real-world conditions.


Assuntos
Desnitrificação , Biofilmes , Reatores Biológicos , Nitratos , Thiobacillus
20.
Front Cell Infect Microbiol ; 10: 589297, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384968

RESUMO

Traveler's diarrhea (TD) is a recurrent and significant issue for many travelers including the military. While many known enteric pathogens exist that are causative agents of diarrhea, our gut microbiome may also play a role in TD susceptibility. To this end, we conducted a pilot study of the microbiome of warfighters prior to- and after deployment overseas to identify marker taxa relevant to TD. This initial study utilized full-length 16S rRNA gene sequencing to provide additional taxonomic resolution toward identifying predictive taxa.16S rRNA analyses of pre- and post-deployment fecal samples identified multiple marker taxa as significantly differentially abundant in subjects that reported diarrhea, including Weissella, Butyrivibrio, Corynebacterium, uncultivated Erysipelotrichaceae, Jeotgallibaca, unclassified Ktedonobacteriaceae, Leptolinea, and uncultivated Ruminiococcaceae. The ability to identify TD risk prior to travel will inform prevention and mitigation strategies to influence diarrhea susceptibility while traveling.


Assuntos
Microbioma Gastrointestinal , Diarreia , Microbioma Gastrointestinal/genética , Humanos , Projetos Piloto , RNA Ribossômico 16S/genética , Viagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA